Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production

نویسندگان

  • Maarten Walmagh
  • Renfei Zhao
  • Tom Desmet
  • Vladimír Křen
چکیده

Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-D-glucopyranosyl α-D-galactopyranoside) or galactotrehalose (α-D-galactopyranosyl α-D-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. "Greener" alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biocatalytic Production of Trehalose from Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli

Trehalose is a non-reducing disaccharide, which can protect proteins, lipid membranes, and cells from desiccation, refrigeration, dehydration, and other harsh environments. Trehalose can be produced by different pathways and trehalose synthase pathway is a convenient, practical, and low-cost pathway for the industrial production of trehalose. In this study, 3 candidate treS genes were screened ...

متن کامل

Flow chemistry kinetic studies reveal reaction conditions for ready access to unsymmetrical trehalose analogues.

Monofunctionalization of trehalose, a widely-found symmetric plant disaccharide, was studied in a microreactor to give valuable kinetic insights that have allowed improvements in desymmetrization yields and the development of a reaction sequence for large scale monofunctionalizations that allow access to probes of trehalose's biological function.

متن کامل

Rationally engineered variants of S-adenosylmethionine (SAM) synthase: reduced product inhibition and synthesis of artificial cofactor homologues.

S-Adenosylmethionine (SAM) synthase was engineered for biocatalytic production of SAM and long-chain analogues by rational re-design. Substitution of two conserved isoleucine residues extended the substrate spectrum of the enzyme to artificial S-alkylhomocysteines. The variants proved to be beneficial in preparative synthesis of SAM (and analogues) due to a much reduced product inhibition.

متن کامل

Inflammatory Properties and Adjuvant Potential of Synthetic Glycolipids Homologous to Mycolate Esters of the Cell Wall of Mycobacterium tuberculosis.

The cell wall of mycobacteria is characterised by glycolipids composed of different classes of mycolic acids (MAs; alpha-, keto-, and methoxy-) and sugars (trehalose, glucose, and arabinose). Studies using mutant Mtb strains have shown that the structure of MAs influences the inflammatory potential of these glycolipids. As mutant Mtb strains possess a complex mixture of glycolipids, we analysed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015